Main content


Ruiz Sola, M.A., Coiro, M., Crivelli, S., Zeeman, S.C., Schmidt Kjølner Hansen, S., Truernit, E. (2017) OCTOPUS-LIKE 2, a novel player in Arabidopsis root and vascular development, reveals a key role for OCTOPUS family genes in root metaphloem sieve tube differentiation. New Phytologist. in press

Ferreira S.J., Senning M., Fischer-Stettler M., Streb S., Ast M., Neuhaus H.E., Zeeman S.C., Sonnewald S., Sonnewald, U. (2017). Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLOS One. DOI

Seung D., Boudet J., Monroe J., Schreier T.B., David L., Abt M., Lu K.-J., Zanella M., Zeeman S.C. (2017) Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves. Plant Cell. DOI

Flori S., Jouneau P.-H., Bailleul B., Gallet B., Estrozi L., Moriscot C., Bastien O., Eicke S., Schober A., Bártulos C.R., Maréchal E., Kroth P., Petroutsos D., Zeeman S.C., Breyton C., Schoehn G., Falconet D., Finazzi G. (2017) Plastid thylakoid architecture optimises photosynthesis in diatoms. Nature Communications. in press DOI

Fernandez O., Ishihara H., George G., Mengin V., Flis A., Sumner D., Arrivault S., Feil R., Lunn J., Zeeman S.C., Smith A.M., Stitt M. (2017) Foliar starch turnover occurs in long days and in falling light at the end of the day. Plant Physiology. DOI

Ruckle M.E., Meier M.A., Frey L., Eicke S., Kölliker R., Zeeman S.C., Studer B. (2017) Diurnal leaf starch content: An orphan trait in forage legumes. Agronomy, 7, 6, doi:10.3390/agronomy7010016. DOI

Strydom L., Jewell J., Meier M.A., George G.M., Pfister B., Zeeman S.C., Kossmann J., Lloyd J.R. (2017) Analysis of genes involved in glycogen degradation in Escherichia coli. FEMS Microbiology Letters, fnx016. DOI


Pfister B., Sánchez-Ferrer A., Diaz A., Lu K.-J., Otto C., Holler M., Shaik F.R., Meier F. Mezzenga, R., Zeeman S.C. (2016) Recreating the synthesis of starch granules in yeast. eLife, e15552. DOI

Seung D., Lu K-J., Stettler M., Streb S., Zeeman S.C. (2016) Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis. The Journal of Biological Chemistry, doi: 10.1074/jbc.M116.730648. DOI

Feike D., Seung D., Graf A., Bischof S., Ellick T., Coiro M., Soyk S., Eicke S., Mettler-Altmann T., Lu K.J., Trick M., Zeeman S.C. and Smith A.M. (2016). The starch granule-associated protein EARLY STARVATION1 (ESV1) is required for the control of starch degradation in Arabidopsis thaliana leaves. Plant Cell, 28, 1472-1489. DOI

Thalmann M., Pazmino D., Seung D., Horrer D., Nigro N., Meier T., Kölling K., Pfeifhofer H.W., Zeeman S.C., and Santelia D. (2016) Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell, 28, 1860-1878. DOI

Pfister, B. and  Zeeman, S.C. (2016) Formation of starch in plant cells. Cellular and Molecular Life Sciences, 73, 2781-2807. DOI

Figueroa C.M., Feil R., Ishihara H., Watanabe M., Kölling K., Krause U., Höhne M., Encke B., Plaxton W.C., Zeeman S.C., Li Z., Schulze W.X., Hoefgen R, Stitt M. and Lunn, J.E. (2016) Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant Journal, 85, 410-423. DOI


Seung D., Soyk S., Coiro M., Maier B.A., Eicke S., Zeeman S.C. (2015) PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLOS Biology, 13, e1002080. DOI

Kölling K., George G.M., Künzli R., Flütsch P., Zeeman, S.C. (2015) A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species. Plant Methods, 11, 48. DOI

Lu K-J., Streb S., Meier F., Pfister B., Zeeman S.C. (2015) Molecular genetic analysis of glucan branching enzymes from plants and bacteria in Arabidopsis reveals marked differences in their functions and capacity to mediate starch granule formation. Plant Physiology 169, 1638-1655. DOI

Feller C., Favre P., Janka A., Zeeman S.C., Gabriel J.-P., Reinhardt D. (2015) Mathematical modeling of the dynamics of shoot-root interactions and resource partitioning in plant growth. PLOS ONE, 10, e0127905. DOI

Smith S.M, Zeeman S.C. (2015) Physiology and metabolism: Plant metabolism: globules to global, modules to models. Curr. Opin. Plant Biol. 25:v-viii. doi: 10.1016/j.pbi.2015.06.004. DOI

Kölling K., Thalmann M., Müller A., Jenny C., Zeeman S.C. (2015) Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock. Plant Cell and Environment, 38, 1965-1979. DOI


Pfister B., Lu K-J., Eicke S., Feil R., Lunn J.E., Streb S., Zeeman S.C. (2014) Genetic evidence that chain length and branch point distributions are linked determinants of starch granule formation in Arabidopsis. Plant Physiology, 165, 1457-1474. DOI

Soyk S., Šimková K., Zürcher E., Brand L., Luginbühl L., Vaughan C.K., Wanke D., Zeeman S.C. (2014) The enzyme-like domain of Arabidopsis nuclear beta-amylases is critical during DNA sequence recognition and transcriptional activation. Plant Cell, 26, 1746-1763. DOI

Martinis J., Gaétan G., Valimareanu S., Stettler M. Zeeman S.C., Yamamoto H., Shikanai T., Kessler F. (2014) ABC1K1/PGR6 kinase: a regulatory link between photosynthetic activity and chloroplast metabolism. The Plant Journal, 77, 269–283. DOI

Streb S., Zeeman S.C. (2014) Replacement of the endogenous starch debranching enzymes ISA1 and ISA2 of Arabidopsis with the rice orthologs reveals a degree of functional conservation during starch synthesis. PLOS ONE, 9, e92174. DOI

Beeler S., Liu H.-C., Stadler M., Schreier T., Eicke S., Lue W.-L., Truernit E., Zeeman S.C., Chen J., and Kötting O. (2014) Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis. Plant Physiology, 164, 1175-1190. DOI


Kölling K., Müller A., Flütsch P., Zeeman S.C. (2013) A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana. Plant Methods, 9. DOI

Seung D., Thalmann M., Sparla F., Hachem M.A., Lee S.K., Issakidis-Bourguet E., Svensson B., Zeeman S.C., Santelia D. (2013) The Arabidopsis AtAMY3 is a unique redox-regulated chloroplastic alpha-amylase. Journal of Biological Chemistry, 288, 33620-33633. DOI

Sundberg M., Pfister B., Fulton D., Bischof S., Delatte T., Eicke S., Stettler M., Smith S.M., Streb S., Zeeman S.C. (2013) The heteromultimeric debranching enzyme involved in starch synthesis in Arabidopsis requires both Isoamylase1 and Isoamylase2 subunits for complex stability and activity. PLoS ONE, 8, e75223. DOI

Paparelli E, Parlanti S, Gonzali S, Novi G, Mariotti L, Ceccarelli N, van Dongen JT, Kölling K, Zeeman SC, Perata P (2013) Nighttime sugar starvation orchestrates gibberellin biosynthesis and plant growth. Plant Cell, 25, 3760-3769. DOI

Crumpton-Taylor M., Pike M., Lu K.-J., Hylton C.M., Feil R., Eicke S., Lunn J.E., Zeeman S.C., Smith, A.M. (2013) Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytologist, 200, 1064-1075. DOI

Ragel P., Streb S., Feil R., Sahrawy M., Annunziata M.G., Lunn J.E., Zeeman S.C., Mérida A. (2013) Loss of starch granule initiation has a deleterious effect on the growth of Arabidopsis thaliana plants due to accumulation of ADP-glucose. Plant Physiology, 163, 75-85. DOI

Bischof S., Umhang M., Eicke S., Streb S., Qi W., Zeeman C. (2013) Cecropia peltata accumulates starch or soluble glycogen by differentially regulating starch biosynthetic genes. Plant Cell, 25, 1400-1415. DOI


Streb S., Eicke S., Zeeman S.C. (2012). The simultaneous abolition of three starch hydrolases blocks transient starch breakdown in Arabidopsis. Journal of Biological Chemistry, 287, 41745-41756. DOI

Streb S., Zeeman S.C. (2012). Starch Metabolism in Arabidopsis. The Arabidopsis Book, 10, e0160. DOI

Glaring M.A., Skryhan K., Kötting O., Zeeman S.C., Blennow A. (2012) Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana. Plant Physiology and Biochemistry, 58, 89-97. DOI

Stitt M., Zeeman, S.C. (2012) Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology, 15, 282–292. DOI

Hädrich N., Hendriks J., Kötting O., Arrivault S., Feil R., Zeeman S. C., Gibon Y., Schulze W., Stitt M., Lunn J. (2012) Mutagenesis of cysteine-81 prevents dimerisation of the APS1 subunit of ADP-glucose pyrophosphorylase and alters diurnal starch turnover in Arabidopsis thaliana leaves. The Plant Journal, 70, 231-242. DOI


Santelia D., Kötting O., Seung D., Schubert M., Thalmann M., Bischof S., Meekins D.A., Lutz A., Patron N., Gentry M. S., Allain F.H.-T., Zeeman S.C. (2011) The phosphoglucan phosphatase LSF2 (Like Sex Four 2) dephosphorylates starch at the C3-position in Arabidopsis. Plant Cell, 23, 4096-4111. DOI

Reinhold H., Soyk S., Simkova K., Hostettler C., Marafino J., Samantha M., Vaughan C.K., Monroe J.D., Zeeman S.C. (2011) Beta-amylase–like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 23, 1391-1403. DOI

Glaring M., Baumann M., Abou Hachem M., Nakai H., Nakai N., Santelia D., Sigurskjold B., Zeeman S.C., Blennow A., Svensson B. (2011) Starch-binding domains in the CBM45 family - low-affinity domains from glucan, water dikinase and alpha-amylase involved in plastidial starch metabolism. FEBS Journal, 278, 1175-1185. DOI

Hostettler C., Kölling K., Santelia D., Streb S., Kötting O., Zeeman S.C. (2011) Analysis of starch metabolism in chloroplasts. Methods in Molecular Biology, 775, 387-410. DOI

Santelia, D., Zeeman S.C. (2011) Progress in Arabidopsis starch research and potential biotechnological applications. Current Opinion in Biotechnology, 22, 271-280. DOI

Barratt D.H.P., Kölling K., Graf A., Pike M., Calder G., Findlay K., Zeeman S.C., Smith A.M. (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiology, 155, 328-341. DOI

Accordion. Press Tab to navigate to entries, then Enter to open or collapse content.



Egli B., Kölling K., Köhler C., Zeeman S.C., Streb S. (2010) Loss of cytosolic phosphoglucomutase compromises gametophyte development in Arabidopsis. Plant Physiology,154, 1659-1671. DOI

Regier N., Streb, S., Zeeman, S.C., Frey B. (2010) Seasonal changes in starch and sugar content of poplar (Populus deltoides × nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots. Tree Physiology, 30, 979-987. DOI

Kötting O., Kossmann J., Zeeman S.C., Lloyd J.R. (2010) Regulation of starch metabolism: The age of enlightenment? Current Opinion in Plant Biology, 13, 321-329. DOI

Zeeman S.C., Kossmann J., Smith A.M. (2010) Starch; its metabolism, evolution and biotechnological modification in plants. Annual Review of Plant Biology, 61, 209-234. DOI

Hejazi M., Fettke J., Kötting O., Zeeman S.C., Steup M. (2010) The laforin-like dual-specificity phosphatase SEX4 from Arabidopsis thaliana hydrolyses both C6- and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of α-glucans. Plant Physiology, 152, 711-722. DOI

Comparot-Moss S., Kötting O., Stettler M., Edner C.,  Graf A., Weise S.E., Streb S., Lue W.-L., MacLean D.l, Mahlow S., Ritte G., Steup M., Chen J., Zeeman S.C., Smith A.M. (2010) A putative phosphatase, LSF1, is required for normal starch turnover in Arabidopsis leaves. Plant Physiology, 152, 685-697. DOI


Stettler M., Eicke S., Mettler T., Messerli G., Hörtensteiner S., Zeeman S.C. (2009) Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Molecular Plant, 2, 1233-1246. DOI

Streb S., Egli B., Eicke S., Zeeman S.C. (2009) The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localised pathway. Plant Physiology, 151, 1769-1772. DOI

Regier N., Streb S., Cocozza C., Schaub M., Cherubini P., Zeeman S. C., Frey B. (2009) Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant, Cell and Environment, 32, 1724-1736. DOI

Hürlimann H. C., Pinson B., Stadler-Waibel M., Zeeman S. C., Freimoser F. M. (2009) The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO reports, 10, 1003-1008. DOI

Kötting O., Santelia D., Edner C., Eicke S., Marthaler T., Gentry M.S., Comparot- Moss S., Chen J., Smith A.M., Steup M., Ritte G., Zeeman S.C. (2009) STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. The Plant Cell, 21, 334-346. DOI


Streb S., Delatte T., Umhang M., Eicke S., Schorderet M., Reinhardt D., Zeeman S.C. (2008) Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. The Plant Cell, 20, 3448-3466. DOI

Fulton D.C., Stettler M., Mettler T., Vaughan C.K., Li J., Francisco P., Gil M., Reinhold H., Eicke S., Messerli G., Dorken G., Halliday K., Smith A.M., Smith St.M., Zeeman S.C. (2008) Beta-AMYLASE4 a noncatalytic protein required for starch breackdown, acts upstream of three acive beta-amylases in arabidopsis chloroplasts. The Plant Cell, 20, 1040-1058. DOI


Messerli G., Partovi Nia V., Trevisan M., Kolbe A., Schauer N., Geigenberger P., Chen J., Davison A.C., Fernie A.R., Zeeman S.C. (2007) Rapid classification of phenotypic mutants of Arabidopsis via metabolite fingerprinting. Plant Physiology, 143, 1484-1492. DOI

Zeeman S.C., Delatte T., Messerli G., Umhang M., Stettler M., Mettler T., Streb S., Reinhold H., Kötting O. (2007) Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms. Functional Plant Biology, 34, 465-473. DOI

Zeeman S.C., Smith S.M., Smith A.M. (2007) The diurnal metabolism of leaf starch. Biochemical Journal, 401, 13-28. DOI


Smith A.M., Zeeman S.C. (2006) Quantification of starch in plant tissues. Nature Protocols, 1, 1342-1345. DOI

Niittylä T., Comparot-Moss S., Lue W.-L., Messerlie G., Trevisan M., Seymour M.D.J., Gatehouse J.A., Villadsen D., Smith S.M., Chen J., Zeeman S.C., Smith A.M. (2006) Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. Journal of Biological Chemistry, 281, 11815-11818. DOI

Delatte T., Umhang M., Trevisan M., Eicke S., Thorneycroft T., Smith S.M., Zeeman S.C. (2006) Evidence for distinct mechanisms of starch granule breakdown in plants. Journal of Biological Chemistry, 281, 12050-12059. DOI


Yu T.-S., Zeeman S.C., Thorneycroft D., Fulton D.C., Lue W.-L., Hegemann D., Tung S.-Y., Umemoto T., Chapple A., Tsai D.-L., Dunstan H., Wang S.-M., Smith A.M., Chen J., Smith S.M. (2005) α-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. Journal of Biological Chemistry 250, 9773-9779. DOI

Delatte T., Trevisan M., Parker M.L., Zeeman S.C. (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. The Plant Journal, 41, 815-830. DOI

Smith A.M., Zeeman S.C., Smith S.M. (2005) Starch degradation. Annual Review of Plant Biology, 56, 73-97. DOI


Smith S.M., Fulton D.C., Chia T., Thorneycroft D., Chapple A., Dunstan H., Hylton C., Zeeman S.C., Smith A.M. (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology 136, 2687-2699. DOI

Zeeman S.C., Smith S.M., Smith A.M. (2004) Tansley Review. The breakdown of starch in leaves. New Phytologist 163, 247-261. DOI

Zeeman S.C., Thorneycroft D., Schupp N., Chapple A., Weck M., Dunstan H., Haldimann P., Bechtold N., Smith A.M., Smith S.M. (2004) The role of plastidial α-glucan phosphorylase in starch degradation and tolerance of abiotic stress in Arabidopsis leaves. Plant Physiology 135, 849-858. DOI

Niittylä T., Messerli G., Trevisan M., Chen J., Smith A.M., Zeeman S.C. (2004) A novel maltose transporter essential for starch degradation in leaves. Science, 303, 87-89. DOI

Chia T., Thorneycroft D., Chapple A., Messerli G., Chen J., Zeeman S.C., Smith S.M., Smith A.M. (2004) A cytosolic glycosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. The Plant Journal, 37, 853-863. DOI


Smith A.M., Zeeman S.C., Niittyla T., Kofler H., Thorneycroft D., Smith, S.M. (2003) Starch degradation in leaves. Journal of Applied Glycoscience, 50, 173-176. 

Smith A.M., Zeeman S.C., Thorneycroft D., Smith S.M. (2003) Starch mobilisation in leaves. Journal of Experimental Botany, 54, 577-583. DOI

Hussein H., Mant A., Seale R., Zeeman S.C., Hinchliffe E., Edwards A., Hylton C., Borneman S., Smith A.M., Martin C., Bustos R. (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. The Plant Cell, 15, 133-149. DOI


Edwards A., Vincken J.-P., Suurs L.C.J.M., Visser R.G.F., Zeeman S.C., Smith, A.M., Martin C. (2002) Discrete forms of amylose are synthesised by isoforms of GBSSI in pea. The Plant Cell, 14, 1767-1785. DOI

Zeeman S.C., Pilling E., Tiessen A., Kato L., Donald A.M., Smith A.M. (2002). Starch synthesis in Arabidopsis; granule synthesis, composition and structure. Plant Physiology, 129, 516-529. DOI

Zeeman S.C., Smith S.M., Smith A.M. (2002). The priming of amylose synthesis in Arabidopsis leaves. Plant Physiology, 128, 1069-1076. DOI


Yu T.-S./Kofler H., Häusler R. E., Hille D., Flügge U.-I., Zeeman S.C., Smith A.M., Kossmann J., Lloyd J., Ritte G., Steup M., Lue W.-L., Chen J., Weber A. (2001) SEX1 is a general regulator of starch degradation in plants and not the chloroplast hexose transporter. The Plant Cell, 13, 1907-1918. DOI

Critchley J., Zeeman S.C., Takaha T., Smith A.M., Smith S.M. (2001) A critical role for disproportionating enzyme in starch breakdown but not in starch synthesis is revealed by a knock-out mutation in Arabidopsis thaliana. The Plant Journal, 26, 89-100. DOI

Denyer K., Johnson P., Zeeman S.C., Smith A.M. (2001). The control of amylose synthesis. Journal of Plant Physiology, 158, 479-487. DOI


Zeeman S.C., Critchley J.H., Takaha T., Smith S.M., Smith A.M. (2000). The synthesis and degradation of starch in Arabidopsis leaves: the role of disproportionating enzyme. Proceedings of 'Starch 2000; Structure and Function', pp 144-149.  

Smith A.M., Zeeman S.C., Denyer K. (2000). The synthesis of amylose. Proceedings of 'Starch 2000; Structure and Function', pp 150-163. 


Zeeman S.C., ap Rees T. (1999). Changes in carbohydrate metabolism and assimilate export in starch excess mutants of Arabidopsis. Plant, Cell and Environment, 22, 1445-1453. DOI

Smith A.M., Denyer K., Zeeman S.C., Edwards A., Martin C. (1999). The synthesis of the starch granule. In 'Plant Carbohydrate Biochemistry', M. Burrell, J. Bryant and N. Kruger eds. BIOS Scientific Publishers Ltd, Oxford, U.K. 


Zeeman S.C., Umemoto T., Lue W.-L., Au-Yeung P., Martin C., Smith A.M., Chen J. (1998). A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. The Plant Cell, 10, 1699-1711. DOI

Zeeman S.C., Northrop F., Smith A.M., ap Rees T. (1998). A starch-accumulating mutant of Arabidopsis thaliana deficient in a starch-hydrolyzing enzyme. The Plant Journal, 15, 357-365. DOI

Page URL:
© 2017 Eidgenössische Technische Hochschule Zürich